Abstract

The endoplasmic reticulum (ER) is a major membrane-bound organelle in all eukaryotic cells. This organelle comprises morphologically distinct domains, including the nuclear envelope and peripheral sheets and tubules. The tubules are connected by three-way junctions into a network. Several membrane proteins have been implicated in network formation; curvature-stabilizing proteins generate the tubules themselves, and membrane-anchored GTPases fuse tubules into a network. Recent experiments have shown that a tubular network can be formed with reconstituted proteoliposomes containing the yeast membrane-fusing GTPase Sey1 and a curvature-stabilizing protein of either the reticulon or REEP protein families. The network forms in the presence of GTP and is rapidly disassembled when GTP hydrolysis of Sey1 is inhibited, indicating that continuous membrane fusion is required for its maintenance. Atlastin, the ortholog of Sey1 in metazoans, forms a network on its own, serving both as a fusion and curvature-stabilizing protein. These results show that the reticular ER can be generated by a surprisingly small set of proteins, and represents an energy-dependent steady state between formation and disassembly. Models for the molecular mechanism by which curvature-stabilizing proteins cooperate with fusion GTPases to form a reticular network have been proposed, but many aspects remain speculative, including the function of additional proteins, such as the lunapark protein, and the mechanism by which the ER interacts with the cytoskeleton. How the nuclear envelope and peripheral ER sheets are formed remain major unresolved questions in the field. Here, we review reconstitution experiments with purified curvature-stabilizing proteins and fusion GTPases, discuss mechanistic implications and point out open questions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call