Abstract

Synapses are semi-membraneless, protein-dense, sub-micron chemical reaction compartments responsible for signal processing in each and every neuron. Proper formation and dynamic responses to stimulations of synapses, both during development and in adult, are fundamental to functions of mammalian brains, although the molecular basis governing formation and modulation of compartmentalized synaptic assemblies is unclear. Here, we used a biochemical reconstitution approach to show that, both in solution and on supported membrane bilayers, multivalent interaction networks formed by major excitatory postsynaptic density (PSD) scaffold proteins led to formation of PSD-like assemblies via phase separation. The reconstituted PSD-like assemblies can cluster receptors, selectively concentrate enzymes, promote actin bundle formation, and expel inhibitory postsynaptic proteins. Additionally, the condensed phase PSD assemblies have features that are distinct from those in homogeneous solutions and fit for synaptic functions. Thus, we have built a molecular platform for understanding how neuronal synapses are formed and dynamically regulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.