Abstract

Nanomedicine represents a promising way to devise better drug delivery systems (DDSs), and the development of cell/tissue-based lipid carriers is a promising strategy. In this study, the author proposes the concept of reconstituted lipid nanoparticles (rLNPs) and offers a facile preparation method. The results demonstrated that the preparation of ultrasmall (∼20 nm) rLNPs can be highly reproducible from both cells (a mouse breast cancer cell line, 4T1) and tissue (mouse liver tissue). As a selected model platform, rLNPs derived from mouse liver tissue can be further labeled with imaging molecules (indocyanine green and coumarin 6) and modified with targeting moiety (biotin). Moreover, rLNPs were proved to be highly biocompatible and able to load various drugs, such as doxorubicin hydrochloride (Dox) and curcumin (Cur). Most importantly, Dox-loaded rLNPs (rLNPs/Dox) exerted good in vitro and in vivo anticancer performances. Therefore, rLNPs might be a potential versatile carrier for the construction of different DDSs and treatment of a variety of diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call