Abstract
Recent progress in the fields of tissue engineering, micro-electro mechanical systems, and materials science have greatly improved cell culture systems, which were traditionally performed in a static two-dimensional manner. This progress has led to a number of new cell culture concepts represented by organ-on-a-chip, three dimensional (3D)-tissues, and microphysiological systems, among others. In this review, these culture models are categorized as reconstituted human organ models, which recapitulate human organ-like structure, function, and responses with physiological relevance. In addition, we also describe the expectations of reconstituted organ models from the viewpoint of a pharmaceutical company based on recent concerns expressed in drug discovery and development. These models can be used to assess the pharmacokinetics, safety and efficacy of new molecular entities (NMEs) prior to clinical trials. They can also be used to conduct mechanistic investigations of events that arise due to administration of NMEs in humans. In addition, monitoring biomarkers of organ function in these models will aid in the translation of their changes in humans. As the majority of reconstituted human organ models show improved functional characteristics and long-term maintenance in culture, they are valuable for modeling human events. An example is described using the three-dimensional bioprinted human liver tissue model in this article. Implementation of reconstituted human organ models in drug discovery and development can be accelerated by encouraging collaboration between developers and users. Such efforts will provide significant benefits for delivering new and improved medicines to patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.