Abstract

Many studies have shown that human gingival keratinocytes grown in submerged culture fail to attain optimal differentiation. This study reports an in vitro culture system for oral gingival epithelial cells, in which they are grown at the air-liquid interface, on polycarbonate inserts, in the presence of an NIH-3T3 feeder layer. This model was compared with two submerged culture methods for gingival keratinocytes, on type 1 collagen gel and on an NIH-3T3 feeder layer. Transmission electron microscopy showed an advanced level of stratification (over six layers of cells) for cultures grown at the air-liquid interface. Immunofluorescence and electrophoretic patterns showed the presence of cytokeratins 10 and 11 in cytoskeletal protein extracts of these cultured keratinocytes. In this air-liquid interface culture model, in the presence of NIH-3T3 feeder cells, keratinocytes can achieve an advanced level of stratification and differentiation and a resemblance to in vivo gingiva. The obtention of a highly differentiated epithelium will permit in vitro pharmacological studies and studies on the biocompatability of certain alloys with the superficial periodontium; it will also provide grafts for patients undergoing periodontal surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call