Abstract

Solid-state 73Ge nuclear magnetic resonance (NMR) is an attractive technique for the characterization of solid germanium-containing materials, but experiments can be exceedingly difficult in practice due to the unfavourable NMR properties of the 73Ge nucleus. Presented herein is a series of solid-state 73Ge NMR experiments on germanium halides (GeX4 and GeX2, where X = I, Br, and Cl) conducted at moderate (9.4 and 11.7 T) and ultrahigh (21.1 T) magnetic fields, intended to characterize the 73Ge NMR response in highly symmetric and asymmetric coordination environments. Quadrupole coupling constants range from 0.16 to 35 MHz. Isotropic chemical shifts for the GeX4 series trend with halide electronegativity, as found for the analogous silicon and tin halides. The indirect spin-spin coupling constant 1J(73Ge, 127I) is estimated from 73Ge MAS NMR to be 35 ± 10 Hz in GeI2, with the reduced coupling constant agreeing with those of other group 14 halides. Quantum chemical calculations using GIPAW DFT are in reasonable accord with experimental quadrupole couplings, but fail for chemical shielding. A preliminary NMR crystallographic study of GeI2 and GeCl2 incorporating 127I and 35Cl NMR spectra has led to plausible conclusions reflecting the structural homology of these compounds, although definitive characterization remains elusive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.