Abstract

We have developed a rapid ‘reconnaissance’ method of preparing graphite for 14C/ 12C analysis. Carbonate (∼15 mg) is combusted using an elemental analyzer and the resulting CO 2 is converted to graphite using a sealed tube zinc reduction method. Over 85% ( n=45 replicates on twenty-one individual corals) of reconnaissance ages measured on corals ranging in age from 500 to 33,000 radiocarbon years (Ryr) are within two standard deviations of ages generated using standard hydrolysis methods on the same corals, and all reconnaissance ages are within 300 Ryr of the standard hydrolysis ages. Replicate measurements on three individual aragonitic corals yielded ages of 1076±35 Ryr (standard deviation; n=5), 10,739±47 Ryr ( n=8), and 40,146±3500 Ryr ( n=9). No systematic biases were found using different cleaning methods or variable sample sizes. Analysis of 13C/ 12C was made concurrently with the 14C/ 12C measurement to correct for natural fractionation and for fractionation during sample processing and analysis. This technique provides a new, rapid method for making accurate, percent-level 14C/ 12C analyses that may be used to establish the rates and chronology of earth system processes where survey-type modes of age estimation are desirable. For example, applications may include creation of sediment core-top maps, preliminary age models for sediment cores, and growth rate studies of marine organisms such as corals or mollusks. We applied the reconnaissance method to more than 100 solitary deep-sea corals collected in the Drake Passage in the Southern Ocean to investigate their temporal and spatial distribution. The corals used in this study are part of a larger sample set, and the subset that was dated was chosen based on species as opposed to preservation state, so as to exclude obvious temporal biases. Similar to studies in other regions, the distribution of deep-sea corals is not constant through time across the Drake Passage. Most of the corals from the Burdwood Bank (continental shelf of Argentina) have ages ranging between 0 and 2500 calendar years, whereas most of the corals from the Sars Seamount in the Drake Passage have ages between 10,000 and 12,500 calendar years. Such differences may be caused in part by sampling biases, but may also be caused by changes in larval transport, nutrient supply, or other environmental pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.