Abstract

AbstractThe practical deployment of rechargeable aqueous zinc‐ion batteries (RAZBs) in the scaled power system suffers from unregulated Zn dendrite growth as well as parasitic reactions at the zinc foil/aqueous electrolyte interface, leading to insufficient zinc utilization and severe electrode corrosion. Herein, a novel crown ether additive is developed, with tailored molecular engineering, to stepwise regulate the Zn2+ solvation network and interfacial chemistry of Zn metal anode. The designed crown ether (C5SeCN), featuring zincophilic cyano group and hydrophobic selenium, efficiently reconstructs the solvation sheath of Zn ions at the 0.3 wt.% dose amount. Additionally, the ozone plasma treatment tethers the O2‐ groups onto the thin‐layer zinc foil, which thus binds Se atoms of the C5SeCN to the Zn anode. The Zn||Zn symmetric cells exhibit a lifespan of over 4500 h at 1 mA cm−2 and high current density endurance of up to 10 mA cm−2. Moreover, the 2 mAh cm−2 Zn||V2O5 full cell model, at the low N/P ratio of 2.8 with a lean electrolyte (E/C ratio = 10 µL mAh−1), enables robust cycling endurance at 2 A g⁻¹ for 300 cycles. This study unravels the interfacial design rationales for maximizing zinc utilization and highlights the commercial potential of crown ether additives for RAZBs development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.