Abstract

Patterns of white light are projected on liquid crystal (LC) polymer films containing gold nanospheres (NS) or nanorods (NR) to induce out-of-plane buckling through a photothermal effect. Straightforward synthetic techniques are used to provide well-dispersed nanocomposite films, with NRs exhibiting self-alignment with the LC director. Using a combination of prepatterned director orientation and spatiotemporal variations in light intensity, these nanocomposite films can be reversibly configured into different 3D states. Fine control over shape is demonstrated through variations in size, shape, and intensity of the illuminated region. Switching time scales are found to be of order a few seconds or below, likely reflecting the intrinsic relaxation time of the LC materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call