Abstract

BackgroundStudies exploring topological properties of the metabolic network during the presymptomatic stage of genetic frontotemporal dementia (FTD) are scarce. However, such knowledge is important for understanding brain function and disease pathogenesis. Therefore, we aimed to explore FTD-specific patterns of metabolism topology reconfiguration in microtubule-associated protein tau (MAPT) mutation carriers before the onset of symptoms.MethodsSix asymptomatic carriers of the MAPT P301L mutation were compared with 12 non-carriers who all belonged to the same family of FTD. For comparison, we included 32 behavioral variant FTD (bvFTD) patients and 33 unrelated healthy controls. Each participant underwent neuropsychological assessments, genetic testing, and a hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) scan. Voxel-wise gray matter volumes and standardized uptake value ratios were calculated and compared for structural MRI and fluorodeoxyglucose (FDG)-PET, separately. The sparse inverse covariance estimation method (SICE) was applied to topological properties and metabolic connectomes of brain functional networks derived from 18F-FDG PET/MRI data. Independent component analysis was used to explore the metabolic connectivity of the salience (SN) and default mode networks (DMN).ResultsThe asymptomatic MAPT carriers performed normal global parameters of the metabolism network, whereas bvFTD patients did not. However, we revealed lost hubs in the ventromedial prefrontal, orbitofrontal, and anterior cingulate cortices and reconfigured hubs in the anterior insula, precuneus, and posterior cingulate cortex in asymptomatic carriers compared with non-carriers, which overlapped with the comparisons between bvFTD patients and controls. Similarly, significant differences in local parameters of these nodes were present between asymptomatic carriers and non-carriers. The reduction in the connectivity of lost hub regions and the enhancement of connectivity between reconfigured hubs and components of the frontal cortex were marked during the asymptomatic stage. Metabolic connectivity within the SN and DMN was enhanced in asymptomatic carriers compared with non-mutation carriers but reduced in bvFTD patients relative to controls.ConclusionsOur findings showed that metabolism topology reconfiguration, characterized by the earliest involvement of medial prefrontal areas and active compensation in task-related regions, was present in the presymptomatic phase of genetic FTD with MAPT mutation, which may be used as an imaging biomarker of increased risk of FTD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.