Abstract

We study the problem of reconfiguring one list edge-coloring of a graph into another list edge-coloring by changing only one edge color assignment at a time, while at all times maintaining a list edge-coloring, given a list of allowed colors for each edge. First we show that this problem is PSPACE-complete, even for planar graphs of maximum degree 3 and just six colors. We then consider the problem restricted to trees. We show that any list edge-coloring can be transformed into any other under the sufficient condition that the number of allowed colors for each edge is strictly larger than the degrees of both its endpoints. This sufficient condition is best possible in some sense. Our proof yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices using O(n2) recolor steps. This worst-case bound is tight: we give an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n2) recolor steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.