Abstract

First-principle calculations in the frame of density-functional theory (DFT) in the general gradient approximation (GGA) are performed by using the augmented plane wave plus local orbital (APW+lo) method for pure GaAs(110) surface and the adsorptions of Xe atoms on it. A supercell consisting of five atomic layers is constructed to simulate the geometical configuration of clean GaAs(110) surface and the adsorption of Xe atoms. The Newton dynamics method is used to relax the atomic positions. Initiating with the Xe atom on top of Ga atom, As atom, and at the bridge site, respectively, it is found that the total energy of the supercell reaches the minimum when the Xe atoms are located at the bridge site. Additionally, it is shown that the adsorption of Xe atoms make the relaxed GaAs(110) surface to return to the ideal crystal geometrical configuration as generally expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.