Abstract

This paper addresses the post-fault selection of an actuators configuration for flow-based networks with back-up components. The proposed reconfiguration methodology consists of an offline and an online phase. On the one hand, an offline analysis looks for the minimal configurations for which the economic cost of the (best) steady-state trajectory that can be achieved using a robust model predictive control (MPC) policy is admissible. On the other hand, at fault detection time, an online search for the best actuators configuration to cope with the transient induced by the fault is conducted in the superset of each minimal configuration calculated offline. With this strategy, the final new configuration is computed by sequentially solving a set of mixed-integer programs whose constraints are derived from single-layer robust MPC schemes coupled with local controllers designed for the a priori minimal configurations identified offline. A portion of a water transport network is used to show the performance the proposed solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.