Abstract

This study proposed a method for optimizing a radial distribution network by integrating wind turbine allocation, considering fluctuating load demands, through the use of a hybrid Grey Wolf Optimizer-Genetic Algorithm (HGWOGA). This approach aims to decrease the network’s energy loss costs. By incorporating genetic algorithm techniques, the method enhances the Grey Wolf Optimizer’s efficiency, speeding up convergence and avoiding local optima. The strategy determines the network’s open lines and the placement and capacity of wind turbines, adhering to radiality and operational constraints. It categorizes load levels into residential, commercial, and industrial, providing a comprehensive analysis of energy losses and their cost implications under various scenarios, including constant and dynamic loads. The study suggests that managing time-varying demand offers a more accurate depiction of network challenges, enabling effective reconfiguration throughout different demand phases. Moreover, HGWOGA demonstrates its ability to find the global optimum efficiently, even with reduced population sizes—a feat not achievable with the Grey Wolf Optimizer alone. Comparative analyses reveal HGWOGA’s effectiveness in curbing network energy loss costs better than previous methodologies. By simultaneously applying network reconfiguration and wind turbine allocation, as opposed to merely reconfiguring the network, this approach notably reduces power loss, diminishes the cost of losses, and enhances the voltage profile. This synergistic strategy leverages the dynamic allocation of wind turbines within the network, optimizing energy flow and distribution efficiency, thereby offering a substantial improvement over conventional network reconfiguration methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call