Abstract

We present a reconfigurable topological photonic system consisting of a 2D lattice of coupled ring resonators, with two sublattices of site rings coupled by link rings, which can be accurately described by a tight-binding model. Unlike previous coupled-ring topological models, the design is translationally invariant, similar to the Haldane model, and the nontrivial topology is a result of next-nearest couplings with nonzero staggered phases. The system exhibits a topological phase transition between trivial and spin Chern insulator phases when the sublattices are frequency detuned. Such topological phase transitions can be easily induced by thermal or electro-optic modulators, or nonlinear cross phase modulation. We use this lattice to design reconfigurable topological waveguides, with potential applications in on-chip photon routing and switching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.