Abstract

AbstractReversible programming of 3D soft mesostructures is desired for many applications including soft robotics and biomedical devices. The large, reversible shape changes of liquid crystal elastomers (LCEs), which result from the coupling between the alignment of liquid crystal (LC) molecules and the macroscopic deformation of polymer networks, have attracted much attention for such applications. Here, a facile and versatile strategy is introduced to create reconfigurable, freestanding 3D mesostructures of LCEs and magnetic LCE composites that are inaccessible with existing techniques via spatially programming LC molecules through mechanical buckling. Demonstrations include experimental and theoretical results of more than 20 reconfigurable 3D LCE mesostructures of diverse configurations, from coils and spirals to structures that resemble fences and frameworks, with characteristic feature sizes and thicknesses ranging from micro to macro. The large, reversible shape‐switching behaviors of these structures over multiple cycles are also demonstrated. An LCE gripper is shown to grab/release objects of both regular and irregular geometries. Furthermore, a robot of ferromagnetic LCE composites that simultaneously responds to magnetic and thermal stimuli for diverse biomimetic behaviors, especially crawling underneath a narrow crack, illustrates the integration of other functional materials to LCEs for multifunctional systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.