Abstract

Different phoretic driving mechanisms have been proposed for the transport of solid or liquid microscopic inclusions in integrated chemical processes. It is now shown that a substrate that was chemically modified with photosensitive self-assembled monolayers enables the direct control of the assembly and transport of large ensembles of micrometer-sized particles and drops that were dispersed in a thin layer of anisotropic fluid. This strategy separates particle driving, which was realized by AC electrophoresis, and steering, which was achieved by elastic modulation of the nematic host fluid. Inclusions respond individually or in collective modes following arbitrary reconfigurable paths that were imprinted by irradiation with UV or blue light. Relying solely on generic material properties, the proposed procedure is versatile enough for the development of applications that involve either inanimate or living materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.