Abstract
Quantum-dot molecules were constructed on a semiconductor surface using atom manipulation by scanning tunneling microscopy (STM) at 5 K. The molecules consist of several coupled quantum dots, each of which comprises a chain of charged adatoms that electrostatically confines intrinsic surface-state electrons. The coupling takes place across tunnel barriers created reversibly using the STM tip. These barriers have an invariant, reproducible atomic structure and can be positioned-and repeatedly repositioned-to create a series of reconfigurable quantum-dot molecules with atomic precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.