Abstract

The engineering of localized modes in photonic structures is one of the main targets of modern photonics. An efficient strategy to design these modes is to use the interplay of constructive and destructive interference in periodic photonic lattices. This mechanism is at the origin of the defect modes in photonic bandgaps, bound states in the continuum, and compact localized states in flat bands. Here, we show that in lattices of lossy resonators, the addition of external optical drives with a controlled phase enlarges the possibilities of manipulating interference effects and allows for the design of novel types of localized modes. Using a honeycomb lattice of coupled micropillars resonantly driven with several laser spots at energies within its photonic bands, we demonstrate the localization of light in at-will geometries down to a single site. These localized modes are fully reconfigurable and have the potentiality of enhancing nonlinear effects and of controlling light–matter interactions with single site resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.