Abstract
A novel 1×4 reconfigurable optical splitter/combiner structure based on Opto-VLSI processor and 4-f imaging system with high resolution is proposed and experimentally demonstrated. By uploading optimized multicasting phase holograms onto the software-driven Opto-VLSI processor, an input optical signal is dynamically split into different output fiber ports with user-defined splitting ratios. Also, multiple input optical signals are dynamically combined with arbitrary user-defined weights.
Highlights
Reconfigurable optical power splitters/combiners have attracted much attention due to the rapid deployment of passive optical networks (PON) for fiber-to-the-premises (FTTP), optical metropolitan area networks (MAN), and active optical cables for TV/video signal transport and distribution [1]
Passive optical splitters/combiners are used in PONs where several hundred users share one optical line terminal (OLT) at the central office, distributing optical power to several tens of optical network units (ONUs) at the customer end of the network, each of which is shared by many users [2]
We propose a novel reconfigurable optical splitter/combiner structure employing an Opto-VLSI processor and a 4-f imaging system with an optimized optical beam waist profile, enabling high-resolution optical power splitting to a larger number of output optical ports
Summary
Reconfigurable optical power splitters/combiners have attracted much attention due to the rapid deployment of passive optical networks (PON) for fiber-to-the-premises (FTTP), optical metropolitan area networks (MAN), and active optical cables for TV/video signal transport and distribution [1]. A reconfigurable optical power splitter/combiner can dynamically distribute/combine the optical power and services to/from users in the entire optical access network, providing numerous advantages such as improvement of optical network efficiency and network scalability, and high network reliability. Another possible application of reconfigurable optical splitters/combiners is in the area of photonic signal processing [7, 8], where lightweight and broadband are of prime concern [9,10,11]. A reconfigurable optical splitter/combiner provides RF photonic systems with the capability of dynamically changing the weights of optical signals leading to adaptive signal processing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.