Abstract

The ill-famed von Neumann bottleneck has been the main performance hurdle since the invention of computers. Although several techniques such as separate data/instruction caches, branch prediction, and parallel computing have been proposed and improved efficiency, the throughput bottleneck between CPU and memory is still very much there. We propose a novel reconfigurable multi-core architecture (RMA) to address this issue via the dynamic allocation of heterogeneous computing resources and distributed memory. We show how this is feasible with the state-of-the-art technologies of dynamic partial reconfiguration of hardware resources and runtime operating system configuration. Experiments and analysis show how RMA alleviates the performance bottleneck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.