Abstract
Simultaneous lightwave information and power transfer (SLIPT), co-existing with optical wireless communication, holds an enormous potential to provide continuous charging to remote Internet of Things (IoT) devices while ensuring connectivity. Combining SLIPT with an omnidirectional receiver, we can leverage a higher power budget while maintaining a stable connection, a major challenge for optical wireless communication systems. Here, we design a multiplexed SLIPT-based system comprising an array of photodetectors (PDs) arranged in a 3 × 3 configuration. The system enables decoding information from multiple light beams while simultaneously harvesting energy. The PDs can swiftly switch between photoconductive and photovoltaic modes to maximize information transfer rates and provide on-demand energy harvesting. Additionally, we investigated the ability to decode information and harvest energy with a particular quadrant set of PDs from the array, allowing beam tracking and spatial diversity. The design was explored in a smaller version for higher data rates and a bigger one for higher power harvesting. We report a self-powering device that can achieve a gross data rate of 25.7 Mbps from a single-input single-output (SISO) and an 85.2 Mbps net data rate in a multiple-input multiple-output (MIMO) configuration. Under a standard AMT1.5 illumination, the device can harvest up to 87.33 mW, around twice the power needed to maintain the entire system. Our work paves the way for deploying autonomous IoT devices in harsh environments and their potential use in space applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.