Abstract
We propose and experimentally demonstrate a reconfigurable microwave signal processor, with a bandwidth up to tens of gigahertz. In this technique, any microwave signal processing function with a phase shift of π could be performed by shaping the input optical intensity spectrum. The phase shift of π is implemented by using a differential detection. Thanks to the broad bandwidth provided by the incoherent optical source and the high resolution of the user-defined optical filter, the frequency response of our approach could be in a great agreement with that of an ideal signal processing function. In the experiment, temporal intensity Hilbert transformations and temporal intensity differentiations of Gaussian-like pulses with widths of 125ps, 85ps and 68ps are accurately achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.