Abstract

This article presents the first substrate integrated waveguide (SIW) phase shifter that can be reconfigured using liquid metal (LM). This digital phase shifter exhibits low insertion loss and is reciprocal and bidirectional. It incorporates a series of holes which can be filled or emptied of liquid metal, enabling us to add or remove via connections dynamically, on-the-fly. Using a collection of such holes, it is possible to create a wall along the E-plane or H-plane of the waveguide. When the wall is in place, it blocks the passage of energy. When the wall is absent, energy is able to flow. In this way, it is possible to guide the electromagnetic (EM) waves through one of three paths, having different electrical lengths. The result is a digital switched-line phase shifter that achieves coarse steps of phase change, from 0° up to 180°, in steps of 60°. By filling or emptying individual holes, it is possible to introduce reactive loading into each path. In this way, it is possible to achieve fine phase control in steps of 10°. Using both forms of reconfiguration in unison, the proposed phase shifter is able to deliver a phase shift of up to 180°, in steps of 10°. The proposed phase shifter operates at 10 GHz and exhibits an insertion loss of less than 2.3 dB over its entire operating band. Furthermore, the underlying concept of the proposed phase shifter can be readily scaled for operation in the millimeter-wave (mm-wave) band. The existing phase shifters operating in that band exhibit significant insertion losses. MM-wave phase shifters are expected to find application in 5G mobile access points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.