Abstract

By activating blocked users and altering successive interference cancellation (SIC) sequences, reconfigurable intelligent surfaces (RISs) become promising for enhancing non-orthogonal multiple access (NOMA) systems. To evaluate the benefits between RISs and NOMA, a downlink RIS-aided multi-cell-NOMA network is investigated via stochastic geometry. We first introduce the unique path loss model for RIS reflecting channels. Then, we evaluate the angle distributions based on a Poisson cluster process (PCP) model, which theoretically demonstrates that the angles of incidence and reflection are uniformly distributed. Additionally, we derive closed-form analytical and asymptotic expressions for coverage probabilities of the paired NOMA users. Lastly, we derive the analytical expressions of the ergodic rate for both of the paired NOMA users and calculate the asymptotic expressions for the typical user. The analytical results indicate that 1) the achievable rates reach an upper limit when the length of RIS increases; 2) exploiting RISs can enhance the path loss intercept to improve the performance without influencing the bandwidth. The simulation results show that 1) RIS-aided networks have superior performance than the networks without RISs; and 2) the SIC order in NOMA systems can be altered since RISs are able to change the channel quality of NOMA users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call