Abstract
Physical layer key generation (PLKG) exploits the distributed entropy source of wireless channels to generate secret keys for legitimate users. When the millimeter wave (mmWave) channel is blocked, reconfigurable intelligent surfaces (RISs) have emerged as a prospective approach to constructing reflected channels and improving the secret key rate (SKR). This paper investigates the key generation scheme for the RIS-aided mmWave system. We study the beam domain channel model and exploit the sparsity of mmWave bands to reduce the pilot overhead. We propose a channel probing method to acquire the reciprocal angular information and channel gains. To analyze the SKR, we investigate the channel covariance matrix of beam domain channels. We find that the channel gains of beams are uncorrelated which increases the randomness of secret keys. Considering an eavesdropper, we derive the analytical expressions of SKR when the eavesdropping channel has overlapping clusters with the legitimate channel. Simulations validate that the proposed PLKG scheme outperforms existing schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.