Abstract

Atmospheric turbulence and pointing errors represent substantial hurdles to free-space optical communications (FSOs), impeding their practical design. The reconfigurable intelligent surface (RIS) is an emerging technology that enables reflective radio transmission conditions for next-generation 5G/6G wireless frameworks by intelligently adjusting the beam in the desired direction using low-cost inactive reflecting elements. In this paper, we proposed an RIS-assisted FSO system for mitigating the effects of atmospheric turbulence, pointing errors, and communication system signal blockage. The probability density function and cumulative distribution functions of an FSO system composed of N-RIS elements are evaluated in a free-space environment that contains obstructions. We derived closed-form expressions for the proposed system's bit error rate (BER), outage probability, and channel capacity. The proposed system's performance is analyzed in terms of BER, outage probability, and channel capacity under various weather conditions, pointing errors, and signal blockage. The results are plotted as a function of number of RIS elements and average signal-to-noise ratio. The proposed system will be beneficial in smart-city applications since it will provide reliable connectivity in urban environments with a high population density and high-rise buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.