Abstract

Federated learning (FL) has recently emerged as a novel technique for training shared machine learning models in a distributed fashion while preserving data privacy. However, the application of FL in wireless networks poses a unique challenge on the mobile users (MUs)’ battery lifetime. In this letter, we aim to apply reconfigurable intelligent surface (RIS)-aided wireless power transfer to facilitate sustainable FL-based wireless networks. Our objective is to minimize the total transmit power of participating MUs by jointly optimizing the transmission time, power control, and the RIS’s phase shifts. Numerical results demonstrate that the total transmit power is minimized while satisfying the requirements of both minimum harvested energy and transmission data rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.