Abstract

Power-domain non-orthogonal multiple access (NOMA) has become a promising technology to exploit the new dimension of the power domain to enhance the spectral efficiency of wireless networks. However, most existing NOMA schemes rely on the strong assumption that users’ channel gains are quite different, which may be invalid in practice. To unleash the potential of power-domain NOMA, we propose a reconfigurable intelligent surface (RIS)-empowered NOMA scheme to introduce desirable channel gain differences among the users by adjusting the phase shifts at the RIS. Our goal is to minimize the total transmit power by jointly optimizing the beamforming vectors at the base station, the phase-shift matrix at the RIS, and user ordering. To address challenge due to the highly coupled optimization variables, we present an alternating optimization framework to decompose the non-convex bi-quadratically constrained quadratic problem under a specific user ordering into two rank-one constrained matrices optimization problems via matrix lifting. To accurately detect the feasibility of the non-convex rank-one constraints and improve performance by avoiding early stopping in the alternating optimization procedure, we equivalently represent the rank-one constraint as the difference between nuclear norm and spectral norm. A difference-of-convex (DC) algorithm is further developed to solve the resulting DC programs via successive convex relaxation, followed by establishing the convergence of the proposed DC-based alternating optimization method. We further propose an efficient user ordering scheme with closed-form expressions, considering both the channel conditions and users’ target data rates. Simulation results validate the ability of an RIS in enlarging the channel-gain difference when the users’ original channel conditions are similar and the superiority of the proposed DC-based alternating optimization method in reducing the total transmit power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.