Abstract

Millimeter wave communication suffers from static blockages such as trees, buildings and so on. Reconfigurable Intelligent Surfaces (RISs) has been adapted to solve this blockage problem and enable the urban environment user to choose mmW enabled small cells as their source transmitter or to choose macro cells in case of non-line of sight exists. RIS is a promising network technology to improve the quality of service parameters such as spectral efficiency and energy efficiency by artificially reconfiguring the propagation environment of electromagnetic waves. An indoor user can be connected with mmW band if the line of sight (LOS) link exists. Otherwise, the system utilizes RIS transmission model to have reliable and low-latency communication. It reflects the capability of RISs to enable enhanced communications in challenging environments. An optimization problem is formulated to maximize the sum data rate of an indoor user by phase shift optimization at the RIS. The outage probability of the proposed scheme is analyzed under Rician fading channel. The proposed RIS enabled method targets to enhance the overall performance in terms of average spectral efficiency and achievable data rate in the presence of blockages and system imperfections. The data rate is increased by three fold times than that of the transmission without RIS. The utility of this framework is discussed for both indoor and outdoor environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.