Abstract

We have analyzed two options of using hybrid CMOS/nanodevice circuits with area-distributed (CMOL) interface for the low-level image processing tasks, on the simplest example of 2-D image convolution with a sizable filter window. The first option is to use digital, DSP-like circuits based on a reconfigurable CMOL fabric, while the second one is based on mixed-signal CMOL circuits with the analog presentation of input and output data and the binary presentation of the filter function. Estimates of the circuit performance have been carried out for the 45-nm CMOS technology and the 4.5-nm nanowire half-pitch, and the power consumption fixed at a manageable, ITRS-specified level. In the digital case, the circuit area per pixel is about 25times25 , and the time necessary for convolving a 1024times1024-pixel, 12-bit-accurate image with a 3232-pixel window function of similar accuracy is close to 25 , much shorter than that estimated for purely CMOS circuits with the same minimum feature size on 45 nm. For a mixed-signal CMOL circuit, the corresponding numbers are much better ( ~1 mum2 and 1mus, respectively), but this option requires a very high (~1%) reproducibility of on currents of the necessary crosspoint devices (programmable diodes), which has not yet been reached experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.