Abstract
AbstractThe universal quantum computation provides a new paradigm for information processing. One feasible approach is measurement‐based one‐way quantum computation utilizing cluster states. Generally, the generation of cluster states with different structures for implementing on‐demand quantum computation needs different experimental setup, which limits its scalability. Here, the reconfigurable hexapartite cluster states created by postprocessing the quadrature information of hexapartite entangled state are demonstrated. Without altering the experimental layout, nine quantum correlated states with different structures, especially three cluster states, are implemented. In particular, such method can effectively reduce the excess noise introduced by creating cluster states under limited squeezing resources. This approach provides an avenue for realizing large‐scale reconfigurable cluster states without changing the experimental architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.