Abstract

This paper presents the design and implementation of an efficient reconfigurable parallel prefix computation hardware on field-programmable gate arrays (FPGAs). The design is based on a pipelined dataflow algorithm, and control logic is added to reconfigure the system for arbitrary parallelism degree. The system receives multiple input streams of elements in parallel and produces output streams in parallel. It has an advantage of controlling the degree of parallelism explicitly at run time. The time complexity of the design is O(d+(N?d)/d), where d and N are parallelism degree and stream size, respectively. When the stream size is sufficiently larger than the initial trigger time of the pipeline (d), the time complexity becomes O(N/d). Unlike the prefix computation circuits found in the literature, the design is scalable for different problem sizes including unknown sized data. The design is modular based on a finite state machine, and implemented and tested for target FPGA devices Xilinx Spartan2S XC2S300EFT256-6Q and XC2S600EFG676-6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.