Abstract
This paper presents a compact graphene-based multi-input multi-output (MIMO) antenna for wireless communications operating in frequency band (0.1-10) THz. This work has been performed with four ports microstrip antennas based on 37×88 μm² a silicon dioxide (Sio₂) substrate and copper on the ground layer, with high isolation by a series of unit cells of graphene selected between adjacent patches to reduce the transmission coefficient and antenna size. Graphene's chemical potential will change by changing the connected DC voltage, leading to bandwidth and resonant frequency variation. The simulation has a reflection coefficient is less than -10 dB at (4.5-10) THz of the frequency scale, mutual coupling (-15 dB), and the gain from (4.7-9) THz is (1.6-6.7254) dB. This paper aims to provide wideband, efficient and reconfigurable with simple graphene-based MIMO antenna for THz applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.