Abstract

Deep learning (DL) presents new opportunities for enabling spacecraft autonomy, onboard analysis, and intelligent applications for space missions. However, DL applications are computationally intensive and often infeasible to deploy on radiation-hardened (rad-hard) processors, which traditionally harness a fraction of the computational capability of their commercial-off-the-shelf counterparts. Commercial FPGAs and system-on-chips present numerous architectural advantages and provide the computation capabilities to enable onboard DL applications; however, these devices are highly susceptible to radiation-induced single-event effects (SEEs) that can degrade the dependability of DL applications. In this article, we propose Reconfigurable ConvNet (RECON), a reconfigurable acceleration framework for dependable, high-performance semantic segmentation for space applications. In RECON, we propose both selective and adaptive approaches to enable efficient SEE mitigation. In our selective approach, control-flow parts are selectively protected by triple-modular redundancy to minimize SEE-induced hangs, and in our adaptive approach, partial reconfiguration is used to adapt the mitigation of dataflow parts in response to a dynamic radiation environment. Combined, both approaches enable RECON to maximize system performability subject to mission availability constraints. We perform fault injection and neutron irradiation to observe the susceptibility of RECON and use dependability modeling to evaluate RECON in various orbital case studies to demonstrate a 1.5–3.0× performability improvement in both performance and energy efficiency compared to static approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.