Abstract

This paper presents design of electronically reconfigurable fractional-order filter that is able to be configured to operate as fractional-order low-pass filter (FLPF) or fractional-order high-pass filter (FHPF). Its slope of attenuation between pass band and stop band, i.e., order of the filter, is electronically adjustable in the range between 1 and 2. Also, pole frequency can be electronically controlled independently with respect to other tuned parameters. Moreover, particular type of approximation can be also controlled electronically. This feature set is available both for FLPF and FHPF-type of response. Presented structure of the filter is based on well-known follow-the-leader feedback (FLF) topology adjusted in our case for utilization with just simple active elements operational transconductance amplifiers (OTAs) and adjustable current amplifiers (ACAs), both providing possibility to control its key parameter electronically. This paper explains how reconfigurable third-order FLF topology is used in order to approximate both FLPF and FHPF in concerned frequency band of interest. Design is supported by PSpice simulations for three particular values of order of the filter (1.25, 1.5, 1.75), for several values of pole frequency and for two particular types of approximation forming the shape of both the magnitude and phase response. Moreover, theoretical presumptions are successfully confirmed by laboratory measurements with prepared prototype based on behavioral modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call