Abstract

The rapid advancements in information technology require new information storage and display materials. However, the development of on-demand information storage systems with multiple modes remains a significant challenge. As a pioneering approach, this study designed an integrated visual and haptic information storage and display using a reconfigurable fluorescent liquid crystal elastomer (FLCE) with dynamic covalent bonds. The FLCEs were fabricated in two steps of amine-acrylate aza-Michael addition and photopolymerization, and they simultaneously exhibited phototunable fluorescence caused by the reversible Z/E photoisomerization of the chromophores and a reprogrammable shape owing to the catalyst-free transesterification. In addition, we established various information storage and display modes featuring the characteristics of reversibly photoswitchable fluorescence, shape memory, and thermally reconfigurable shape with a reconfigurable FLCE system. Moreover, a strategy to display the information by incorporating both visual and haptic feedback is implemented for fulfilling the needs of the visually impaired and related users. Such reconfigurable FLCE systems will aid in the development of on-demand information storage, display, and protection devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call