Abstract

In this work, a novel digital channelizer design is developed through the use of a compact, system-level modeling approach. The model efficiently captures key properties of a digital channelizer system and its time-varying operation. The model applies powerful Markov Decision Process (MDP) techniques in new ways for design optimization of reconfigurable channelization processing. The result is a promising methodology for design and implementation of digital channelizers that adapt dynamically to changing use cases and stochastic environments while optimizing simultaneously for multiple conflicting performance goals. The method is used to employ an MDP to generate a runtime reconfiguration policy for a time-varying environment. Through extensive simulations, the robustness of the adaptation is demonstrated in comparison with the prior state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.