Abstract

A Deoxyribonucleic Acid (DNA) microarray is a collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or silicon chip forming an array. DNA microarray technologies are an essential part of modern biomedical research. DNA microarray allows to compress in a little microscope glass, hundreds of thousands of different DNA nucleotide sequences, and permits to have all this information on a single image. The analysis of DNA microarray images allows the identification of gene expressions in order to drawn biological conclusions for applications that ranges from the genetic profiling to the diagnosis of cancer disease. Unfortunately, DNA microarray technology has a high variation of data quality. Therefore, in order to obtain reliable results, complex and extensive image analysis algorithms should be applied before actual DNA microarray information can be used for biomedical purpose. In this paper, we present a novel hardware architecture specifically designed to analyze DNA microarray images. The architecture is based on a dual core system implementing several units working in a single instruction-multiple data fashion. An FPGA-based prototypal implementation of the proposed architecture is presented in this chapter showing how reconfigurable devices can be used to increase the computation performances in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.