Abstract

This study presents the design of an underwater superlimb as a wearable robot, providing divers with mobility assistance and freeing their hands for manipulating tools underwater. The wearable design features a thrust vectoring system with two 3D‐printed, waterproofed modules. The module with adjustable connections and strapping holes is designed to enable reconfiguration for multiple purposes, including regular use as an underwater superlimb for divers, manually operated as a handheld glider for swimmers, combined with an amphibian, legged robot as a quadruped superlimb, and coupled as a dual‐unit autonomous underwater vehicle for underwater navigation. The kinematics and dynamics of the prototype and all of its reconfigured modes are developed. A sliding‐mode controller is also introduced to achieve stable simulation in PyBullet. Field tests further support the feasibility of the underwater superlimb when worn on a test diver in a swimming pool. As the first underwater superlimb presented in the literature, this study opens new doors for supernumerary robotic limbs in underwater scenarios with multifunctional reconfiguration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call