Abstract

Biological system utilizes unidirectional ion flow to produce and transmit signals. To realize bioinspired artificial intelligence and thus seamless human-machine interaction, ion rectification devices should be developed. Here, a reconfigurable CMOS-compatible supercapacitor-diode (CAPode) is developed by resettling the pseudo-capacitive and electrochemical-double-layer-capacitive components of a lithium-ion pseudocapacitor into the positive and negative voltage regions respectively through engineering the redox peaks. This CAPode exhibits good ion rectification and charge-storage bifunction with high rectification ratio (RR) (RRI ~ 20, RRII ~ 0.83), large areal capacitance (17 mF cm-2) and long cycling stability (5000 cycles). More importantly, two main computing paradigms in the biological system are efficiently realized based on this CAPode by empowering the supercapacitor function into the diode: (I) multivalued ionic logic gates are constructed based on the tunable ion rectification characteristics induced by the bifunction of this CAPode for mimicking the dendritic computing; (II) all-CAPode based reservoir computing is implemented based on the reconfigurable volatile and nonvolatile charge-storage characteristics of this CAPode for mimicking the neuromorphic computing. This work paves a new way towards seamless and high-efficiency human-machine interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.