Abstract

Non-Hermitian optics has emerged as a feasible and versatile platform to explore many extraordinary wave phenomena and novel applications. However, owing to ineluctable systematic errors, the constructed non-Hermitian phenomena could be easily broken, thus leading to a compromising performance in practice. Here we theoretically proposed a dynamically tunable mechanism through GST-based phase-change material (PCM) to achieve a reconfigurable non-Hermitian system, which is robust to access the chiral exceptional point (EP). Assisted by PCM that provides tunable coupling efficiency, the effective Hamiltonian of the studied doubly-coupled-ring-based non-Hermitian system can be effectively modulated to resist the external perturbations, thus enabling the reconfigurable chiral EP and a tunable non-reciprocal transmission. Moreover, such tunable properties are nonvolatile and require no static power consumption. With these superior performances, our findings pave a promising way for reconfigurable non-Hermitian photonic devices, which may find applications in tunable on-chip sensors, isolators and so on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.