Abstract

A scheme for reconfigurable channel slicing and stitching is proposed and experimentally demonstrated. By employing optical nonlinear wave mixing and a coherent frequency comb, a single channel spectrum is sliced and redistributed into fragmented frequency slots, which can be stitched together to recover the original channel at the receiver. This approach is verified through a single channel experiment with the modulation formats of quadrature phase-shift keying and 16 quadrature amplitude modulation. The system exhibits less than 1.5% error-vector-magnitude deterioration and no more than 2-dB optical signal-to-noise ratio penalty, compared to a back-to-back baseline. To demonstrate robustness of the scheme, different parameters of the channel slices are varied, such as relative phase offset, relative amplitude, and the number of slices. A 10-km transmission experiment is also conducted and the additional system penalty is negligible. This scheme is used to experimentally demonstrate fragmented channel bandwidth allocation in a dense 6-channel wavelength-division-multiplexing system. The incoming 20-Gbaud optical channel is successfully reallocated into two fragmented frequency slots and reconstructed at the receiver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.