Abstract

We propose and demonstrate a reconfigurable and tunable chip-scale comb filter and (de)interleaver on a silicon platform. The silicon-based photonic integrated device is formed by Sagnac loop mirrors (SLMs) with directional couplers replaced by multi-mode interference (MMI) assisted tunable Mach-Zehnder interferometer (MZI) couplers. The device can be regarded as a large SLM incorporating two small SLMs which form a Fabry-Perot (FP) cavity. By appropriately adjusting the micro-heaters in tunable MZI couplers and cavity, switchable operation between comb filter and (de)interleaver and extinction ratio and wavelength tunable operations of comb filter and (de)interleaver are achievable by thermo-optic tuning. Reconfigurable comb filter and (de)interleaver is demonstrated in the experiment. The central wavelength shifts of comb filter and (de)interleaver are demonstrated with wavelength tuning efficiencies of ~0.0224 nm/mW and ~0.0193 nm/mW, respectively. The 3-dB bandwidth of the comb filter is ~0.032 nm. The 3-dB and 20-dB bandwidths of the (de)interleaver passband are ~0.225 nm and ~0.326 nm. The obtained results indicate that the designed and fabricated device provides switchable comb filtering and interleaving functions together with extinction ratio and wavelength tunabilities. Reconfigurable and tunable silicon-based comb filter and (de)interleaver may find potential applications in robust wavelength-division multiplexing (WDM) optical communication systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.