Abstract

Portable and inexpensive scientific instruments that are capable of performing point of care diagnostics are needed for applications such as disease detection and diagnosis in resource-poor settings, for water quality and food supply monitoring, and for biosurveillance activities in autonomous vehicles. In this paper, we describe the development of a compact flow cytometer built from three separate, customizable, and interchangeable modules. The instrument as configured in this work is being developed specifically for the detection of selected Centers for Disease Control (CDC) category B biothreat agents through a bead-based assay: E. coli O157:H7, Salmonella, Listeria, and Shigella. It has two-color excitation, three-color fluorescence and light scattering detection, embedded electronics, and capillary based flow. However, these attributes can be easily modified for other applications such as cluster of differentiation 4 (CD4) counting. Proof of concept is demonstrated through a 6-plex bead assay with the results compared to a commercially available benchtop-sized instrument.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call