Abstract

Abstract Two large ensemble simulations are adopted to investigate the relative contribution of external forcing and internal variability to Arctic sea ice variability on different time scales since 1960 by correcting the response error of models to external forcing using observational datasets. Our study suggests that previous approaches might overestimate the real impact of internal variability on Arctic sea ice change especially on long time scales. Our results indicate that in both March and September, internal variability plays a dominant role on all time scales over the twentieth century, while the anthropogenic signal on sea ice change can be steadily and consistently detected on a time scale of more than 20 years after the 2000s. We also reveal that the dominant mode of internal variability in March shows consistency across different time scales. On the contrary, the pattern of internal variability in September is highly nonuniform over the Arctic and varies across different time scales, indicating that sea ice internal variability in September at different time scales is driven by different factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.