Abstract

One of the standard correctness criteria for gradual typing is the dynamic gradual guarantee, which ensures that loosening type annotations in a program does not affect its behavior in arbitrary ways. Though natural, prior work has pointed out that the guarantee does not hold of any gradual type system for information-flow control. Toro et al.'s GSLRef language, for example, had to abandon it to validate noninterference. We show that we can solve this conflict by avoiding a feature of prior proposals: type-guided classification, or the use of type ascription to classify data. Gradual languages require run-time secrecy labels to enforce security dynamically; if type ascription merely checks these labels without modifying them (that is, without classifying data), it cannot violate the dynamic gradual guarantee. We demonstrate this idea with GLIO, a gradual type system based on the LIO library that enforces both the gradual guarantee and noninterference, featuring higher-order functions, general references, coarsegrained information-flow control, security subtyping and first-class labels. We give the language a domain-theoretic semantics, using Pitts' framework of relational structures to prove noninterference and the dynamic gradual guarantee.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call