Abstract

Conductive atomic force microscopy (CAFM) is a valuable tool for electrical characterization of organic photovoltaics. However, the quantitative interpretation of the data is complicated by an apparent disagreement between the carrier mobilities calculated by CAFM and those determined by macroscopic measurements, with no apparent physical explanation for the discrepancy. In the present work, the space charge limited current model (specifically Mott-Gurney law) and its assumptions are assessed, and a physical model reconciling this discrepancy is proposed. Its applicability on the tip-sample system used in CAFM measurements is discussed, by accounting for the high electric fields arising around the tip of the CAFM probe and affecting carrier mobility. Charge carrier mobility is calculated from current-voltage curves obtained from conductive atomic force microscopy spectroscopy scans done on Poly(3-hexylthiophene-2,5-diyl): 95% PC70BM ([6,6]-Phenyl-C71-butyric acid methyl ester)/5% PC60BM ([6,6]-Phenyl-C61-butyric acid methyl ester) samples for different concentration ratios of donor and acceptor. We show that charge carrier mobilities obtained with this model are in satisfactory agreement with macroscopic measurements available in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.