Abstract

The significance of late-stage fracturing in the European Alps in a large geodynamic context is reappraised by studying brittle deformations over the entire belt. In the internal Western Alps, paleostress datasets display a major occurrence of orogen-parallel extension resulting in normal faulting and associated strike-slip mode. There the direction of subhorizontal extension rotates with the bending of the Alpine belt. In the Central Alps, paleostress tensors also indicate orogen-parallel extensional regimes, both in the Bergell area and the Lepontine Dome, where the brittle structures are associated with ductile structures related to the formation of large-scale upright folds that accommodate most of the collisional shortening due to the north-directed component of the movement of the South-Alpine indenter. This brittle deformation phase is of Miocene age and is coeval with the propagation of the Alpine front toward the external Alpine domains. In the Eastern Alps, brittle deformation of the Tauern Window displays an overwhelming occurrence of orogen-parallel normal faulting and associated strike-slip regimes again, which is inferred to be driven by lateral extrusion of the orogenic wedge toward the Pannonian basin, partly due to indentation on the Dolomites indenter. The major orogen-parallel extensional signal of the brittle Cenozoic deformations appears remarkably stable all over the internal Alps. Extensional brittle structures are part of a late phase of collisional deformation, during which the propagation of the Alpine front of the Western Alps and the northward movement of the Southern Alpine and the Dolomites indenters in the Central and Eastern Alps were accommodated by orogen-parallel extension in the inner zones, at the scale of the entire chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call