Abstract

Abstract The identification of Baranov chains is associated with the rigid subchain identification problem, which is a crucial step in several methods of structural synthesis of kinematic chains. In this article, a systematic approach for the detection of rigid subchains, based on matroid theory, is presented and proved. Based on this approach, a novel method for the enumeration of Baranov chains is proposed. A novel algorithm is applied to a database of nonisomorphic graphs of nonfractionated zero-mobility kinematic chains. By means of the proposed algorithm, the previous results for Baranov chains presented in the literature with up to 11 links are compared and validated. Furthermore, discrepancies in the number of Baranov chains with up to 13 links, presented in the literature, are pointed out, discussed, and the proven results are presented. Finally, the complete family of Baranov chains with up to 15 links is obtained. Examples of application of the proposed method are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.